This book is an introductory graduatelevel textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard's theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of firstorder partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures. Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.
About John M. Lee
John M. Lee is Professor of Mathematics at the University of Washington in Seattle, where he regularly teaches graduate courses on the topology and geometry of manifolds. He was the recipient of the American Mathematical Society's Centennial Research Fellowship and he is the author of four previous Springer books: the first edition (2003) of Introduction to Smooth Manifolds, the first edition (2000) and second edition (2010) of Introduction to Topological Manifolds, and Riemannian Manifolds: An Introduction to Curvature (1997).Details Book
Author  :  John M. Lee 
Publisher  :  SpringerVerlag New York Inc. 
Data Published  :  24 August 2012 
ISBN  :  1441999817 
EAN  :  9781441999818 
Format Book  :  PDF, Epub, DOCx, TXT 
Number of Pages  :  708 pages 
Age +  :  15 years 
Language  :  English 
Rating  : 
Reviews Introduction to Smooth Manifolds

Margo Anderson Get eBook Introduction to Smooth Manifolds
Finally I get this ebook, thanks for all these I can get now!

Lisa Doran Best website free download ebook
I was suspicious at first when i got redirected to the membership site. Now I'm really excited i found this online library....many thanks Kisses

Markus Jensen How to download Introduction to Smooth Manifolds eBook?
I did not think that this would work, my best friend showed me this website, and it does! I get my most wanted eBook

Roddy Murray
My friends are so mad that they do not know how I have all the high quality ebook which they do not!

Lukasz Czaru
so many fake sites. this is the first one which worked! Many thanks


Andrew Smith
Just select your click then download link, and complete an offer to start downloading the ebook. If there is a survey it only takes 5 minutes, try any survey which works for you.

Kevin Mason
lol it did not even take me 5 minutes at all! XD

